World TB Day Panel Discussion

Tuberculosis Research: State of the Science

Anthony S. Fauci, M.D.
Director
National Institute of Allergy and Infectious Diseases
National Institutes of Health
March 19, 2012

Research to Develop and Optimize Interventions Against Tuberculosis

Implementation: Delivery of Proven Interventions to Patients and Populations

Death Rate for Tuberculosis, United States, 1900-2000 (per 100,000 population)

Widespread Complacency: Perception That We Had an Adequate Tuberculosis Armamentarium

- Skin test
- Sputum for diagnosis
- Curative drugs
- No domestic demand for vaccine

A Failure to Look Beyond our Borders

The Global Burden of Tuberculosis

- One-third of the world’s population is infected with Mycobacterium tuberculosis (Mtb)
- In 2010
 - 8.8 million new cases, incl. 1.1 million among HIV+
 - 1.45 million deaths, incl. 350,000 among HIV+
 - 650,000 prevalent cases of MDR-TB
 - XDR-TB reported in ~70 countries

Source: WHO, 2011

Image: CDC
Major Challenges in the Control of Tuberculosis

- Standard diagnostics are antiquated, insensitive and slow
- Our understanding of TB pathogenesis is limited
- Current drug regimens are complex and lengthy
- Available vaccine not effective in preventing adult pulmonary TB

NIAID Tuberculosis Research

- Basic research
- Epidemiology and natural history
- Drug, vaccine, diagnostics development
- Implementation of NIAID Research Agenda for MDR- and XDR-TB

Selected TB Research Areas

- Diagnosis
- Pathogenesis
- Treatment
- Prevention

Selected TB Research Areas

- Diagnosis
- Pathogenesis
- Treatment
- Prevention

Despite Progress in TB Diagnostics, Severe Limitations

- In community settings, only antiquated diagnostics are available; newer methodologies are confined to referral or reference laboratories
- We still await truly transformative diagnostics
 - Point-of-care
 - Simple, accurate, safe, inexpensive
 - Amenable to readily available clinical specimens
 - Can detect TB anywhere in the body

Sensitive Detection of Tuberculosis and Rifampin Resistance in < 2 hours with Minimal Hands-on Time

- Rapid Molecular Detection of Tuberculosis and Rifampin Resistance
Selected TB Research Areas

- Diagnosis
- **Pathogenesis**
- Treatment
- Prevention

TB Pathogenesis

- Bridge basic and clinical research to understand fundamental questions, e.g., mechanisms of latency, correlates of immunity
- A better understanding of TB pathogenesis will inform the development of new interventions
- Need for TB biomarkers
- Need to understand the host, the pathogen and their complex interactions — *systems biology*

Tuberculosis: the Need for a Systems Biology Approach

A new way of thinking to understand:

- Pathogenesis and immunity — integrated approach to biosignature discovery
- Treatments — illuminate biochemical pathways to guide identification of new drug targets
- Vaccines — define host/pathogen systems to guide antigen discovery and interpret immune responses

Selected TB Research Areas

- Diagnosis
- **Pathogenesis**
- Treatment
- Prevention

TB Therapeutics

- Current regimens require 6-9 months treatment with multiple drugs
- Plagued by patient noncompliance and insufficient medical monitoring
- Various levels of drug resistance complicate treatment

TB Drug Discovery

Transforming TB Therapeutics

- Increase understanding of current regimens
- "Grow" pipeline
- Develop and test new combination regimens
- Explore sensitive and specific surrogate markers
- Explore new areas – e.g., combining drugs with biologics such as synthetic vaccines or immune stimulants
- Increase clinical trials capacity

Global TB Drug Pipeline

<table>
<thead>
<tr>
<th>Drug</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipenem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical TB Research Expansion

- HIV/AIDS Networks –
 - Expanded TB agenda/capabilities
 - New sites
 - Labs – routine, specialized, and translational

- Global TB clinical research expansion
 - Prospective cohorts
 - Clinical trials consortia
 - Key countries include: India, Brazil, South Africa, China

Selected TB Research Areas

- Diagnosis
- Pathogenesis
- Treatment
- Prevention

Tuberculosis Vaccine

- BCG not effective in preventing adult pulmonary TB, the most transmissible form of the disease
- BCG no longer recommended in HIV co-infected children
- New safe and effective vaccines against all forms of TB are urgently needed
Selected Barriers to TB Vaccine Development

- Correlates of protective immunity not known
- Vaccine needed to prevent different stages of disease and pathologic lesions
- Placebo-controlled clinical trials difficult
- Animal models may not predict most effective human vaccines

TB Vaccine Development

- ~14 novel TB vaccine candidates tested in clinical trials
- ~6 candidates in preclinical development
- 30 “next-generation” candidates in the vaccine discovery phase
- To overcome lack of knowledge about markers of protective immunity, diverse vaccine candidates and platforms are being developed

Tuberculosis: NIH and NIAID Funding

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>NIH Funding (in millions)</th>
<th>NIAID Funding (in millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>$10</td>
<td>207</td>
</tr>
<tr>
<td>1988</td>
<td>$15</td>
<td>210</td>
</tr>
<tr>
<td>1989</td>
<td>$20</td>
<td>215</td>
</tr>
<tr>
<td>1990</td>
<td>$25</td>
<td>220</td>
</tr>
<tr>
<td>1991</td>
<td>$30</td>
<td>225</td>
</tr>
<tr>
<td>1992</td>
<td>$35</td>
<td>230</td>
</tr>
<tr>
<td>1993</td>
<td>$40</td>
<td>235</td>
</tr>
<tr>
<td>1994</td>
<td>$45</td>
<td>240</td>
</tr>
<tr>
<td>1995</td>
<td>$50</td>
<td>245</td>
</tr>
<tr>
<td>1996</td>
<td>$55</td>
<td>250</td>
</tr>
<tr>
<td>1997</td>
<td>$60</td>
<td>255</td>
</tr>
<tr>
<td>1998</td>
<td>$65</td>
<td>260</td>
</tr>
<tr>
<td>1999</td>
<td>$70</td>
<td>265</td>
</tr>
<tr>
<td>2000</td>
<td>$75</td>
<td>270</td>
</tr>
<tr>
<td>2001</td>
<td>$80</td>
<td>275</td>
</tr>
<tr>
<td>2002</td>
<td>$85</td>
<td>280</td>
</tr>
<tr>
<td>2003</td>
<td>$90</td>
<td>285</td>
</tr>
<tr>
<td>2004</td>
<td>$95</td>
<td>290</td>
</tr>
<tr>
<td>2005</td>
<td>$100</td>
<td>295</td>
</tr>
<tr>
<td>2006</td>
<td>$105</td>
<td>300</td>
</tr>
<tr>
<td>2007</td>
<td>$110</td>
<td>305</td>
</tr>
<tr>
<td>2008</td>
<td>$115</td>
<td>310</td>
</tr>
<tr>
<td>2009</td>
<td>$120</td>
<td>315</td>
</tr>
<tr>
<td>2010</td>
<td>$125</td>
<td>320</td>
</tr>
<tr>
<td>2011</td>
<td>$130</td>
<td>325</td>
</tr>
<tr>
<td>2012</td>
<td>$135</td>
<td>330</td>
</tr>
<tr>
<td>2013</td>
<td>$140</td>
<td>335</td>
</tr>
</tbody>
</table>

Key Advances in TB Research

- Sequencing of drug sensitive and M/XDR TB
- Surveillance informed by clade evolution
- Differentiation between treatment failure & reinfection
- Molecular markers of drug resistance used in diagnostics
- Targeted mutations for drug discovery
- Bioinformatics to identify vaccine epitopes
- Identify strains with increased virulence and/or drug resistance

The State of TB Research: Reasons for Optimism

- Commitment to funding
- Forging new/stronger partnerships – e.g., clinical trial capacity, translational research
- Robust pipelines
- Progress in HIV-TB management
- Powerful new tools – e.g., “omics” approaches, high-throughput screening, integrative “systems biology”